Responses of the South Florida Coastal and Estuarine Ecosystems to Climate Variability, Extreme Weather Events & Sea Level Rise over the last ~4,800 years

Anna Wachnicka & Lynn Wingard

SERC, Florida International University, Miami, FL USGS, Reston, VA

Pacific and Atlantic Ocean Influence on Precipitation & Salinity Patterns in South Florida

How Estuaries Respond to Warmer Temperatures & Sea Level Rise?

The Past is the Key to the Future...

Sampling Locations

Sampling Locations

Sediment cores

• XRF core scanner for elemental analysis

Modern samples

Epipelon

Epiphyton

Plankton

CAT-scan

• Radiometric Methods: ²¹⁰Pb,¹⁴C

Peat and Marl Deposits in Florida Bay cores

040 B.P.

Bob Allen & Ninemile Bank Cores

Modeling the Structure of Diatom Assemblages using Artificial Neural Networking Algorithms (ANN)

- 1. Self Organizing Maps (SOM) used to reduce dimensionality & to classify samples according to similarities in sp. composition
- 2. Samples with distinct diatom communities represented by coordinates (X,Y) according to their env. features
- 3. Backpropagation Learning Algorithm (BPN) uses env. features of the samples as input var. & coordinates as output var.
- 4. The predicted values (\dot{X}, \dot{Y}) ploted on a 12 celled SOM map to test predictability of BNP

Self Organizing Map with Each Cell Corresponding to a Specific Assemblage

Samples allocated to a given cell have similar diatom assemblages

Jacknife leave-one-out validation procedure of BPN used to compare observed and predicted sample allocations

Next step (not done yet) will be to correlate the taxa with different env. gradients

Major Shifts in Diatom Communities in South Florida cores

Major Restructuring of Diatom Assemblages, Florida Bay and Biscayne Bay, Post-1940s

NIVERSITY

Wachnicka et al. (In Prep.)

Microbenthic Community Response to Environmental Change, Featherbed Bank (Biscayne Bay)

Are Algal Blooms More Frequent Now then in the Past?

Lindsey Visser (NOAA) shows a sampling net slimed by algae during a survey of Biscayne Bay (July 2013)

Taxon Abundance

Conclusions

 Largest changes in community structure in the 1940s, 1950s, 1960s coincided with major hydroscape changes in South Florida

 Changes in community structure in the mid-1950s, & early 1960s, 1970s coincided with severe drought events followed by period of increased precipitation

The early 1960s shits also coincided with 3 major hurricanes

• The mechanisms of rising salinity levels at Ninemile Bank & No Name Bank since 1900 are unclear (precipitation was actually above aver. then....; links to sea level rise?)

ACKNOWLEDGMENTS

 Project Sponsors & Collaborators: USGS, NOAA, NSF, NCS, NRC, Biscayne National Park, SERC, FCE LTER, University of Miami, Florida Atlantic University, Mariners Hospital in Tavernier Key

 Technical Assistance: graduate and undergraduate students, technicians, volunteers

